Classification of Organic and Non-Organic Waste Using Convolutional Neural Network (CNN)
DOI:
https://doi.org/10.69533/xbpg4s54Keywords:
Convolutional Neural Networks, Deep Learning, Image Classification, Organic and Inorganic Waste, Waste ClassificationAbstract
The increase in waste volume in Indonesia, which reached emergency levels in 2024, requires technological solutions that can assist in the sorting process quickly and accurately. Previous research on CNN-based waste classification generally focused on recyclable waste categories with many classes and used structured datasets, which did not adequately represent real-world waste conditions, especially organic waste, which has more varied shapes and conditions. Based on this gap, this study proposes a Convolutional Neural Network (CNN) model for classifying two main categories—organic and inorganic—using 25,077 images and direct testing on field samples. The model was trained using the Adam optimizer and categorical crossentropy loss. The results show high accuracy for inorganic waste (96%), but lower accuracy for organic waste (62%) due to the complexity of texture and natural damage. This study contributes to the field of informatics through the application of more applicable and realistic deep learning for automatic waste sorting systems, as well as opening up opportunities for the development of model architectures that are more adaptive to waste conditions in the actual environment.
Downloads
References
S. I. P. S. Nasional, “Capaian Kinerja Pengelolalan Sampah Tahun 2024,” Kementrian Lingkungan Hidup dan Kehutanan, Indonesia.
E. Nurcahyo and E. Ernawati, “Peningkatan kesadaran masyarakat dalam pengelolaan sampah rumah tangga di Desa Mabulugo, Kabupaten Buton,” Empowerment, vol. 2, no. 02, 2019.
S. Stephen, R. Raymond, and H. Santoso, “Applikasi Convolution Neural Network Untuk Mendeteksi Jenis-jenis Sampah,” Explor. J. Sist. Inf. dan Telemat., vol. 10, no. 2, p. 331313, 2019.
T. U. S. Environmental, P. Agency, U. States, and S. Figure, “Municipal Solid Waste Generation , Recycling , and Disposal in the United States : Facts and Figures for 2012,” pp. 1–14, 2012.
F. A. Azis, H. Suhaimi, and E. Abas, “Waste classification using convolutional neural network,” in Proceedings of the 2020 2nd international conference on information technology and computer communications, 2020, pp. 9–13.
K. Chauhan and S. Ram, “Image classification with deep learning and comparison between different Convolutional neural network structures using tensorflow and keras,” Int. J. Adv. Eng. Res. Dev., vol. 5, no. 02, pp. 533–538, 2018.
M. S. H. Sunny, D. R. Dipta, S. Hossain, H. M. R. Faruque, and E. Hossain, “Design of a convolutional neural network based smart waste disposal system,” in 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), IEEE, 2019, pp. 1–5.
I. Putra, A. Y. Wijaya, and R. Soelaiman, “Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) Pada Caltech 101 Image Classfication Using Convolution Neural Network (Cnn) on Caltech 101,” Inst Teknol Sepuluh Novemb, vol. 5, no. 1, pp. 1–76, 2016.
P. Borugadda, R. Lakshmi, and S. Govindu, “Classification of Cotton Leaf Diseases Using AlexNet and Machine Learning Models,” vol. 40, no. 38, pp. 29–37, 2021, doi: 10.9734/CJAST/2021/v40i3831588.
G. E. Sakr, M. Mokbel, A. Darwich, M. N. Khneisser, and A. Hadi, “Comparing deep learning and support vector machines for autonomous waste sorting,” in 2016 IEEE international multidisciplinary conference on engineering technology (IMCET), IEEE, 2016, pp. 207–212.
V. Maeda-Gutiérrez et al., “Comparison of convolutional neural network architectures for classification of tomato plant diseases,” Appl. Sci., vol. 10, no. 4, p. 1245, 2020.
L. M. Azizah, S. F. Umayah, and F. Fajar, “Deteksi Kecacatan Permukaan Buah Manggis Menggunakan Metode Deep Learning dengan Konvolusi Multilayer,” Semesta Tek., vol. 21, no. 2, pp. 230–236, 2018.
F. Dwiatmoko, D. Utami, and N. A. Sivi, “Klasifikasi Citra Sampah Organik dan Non Organik Menggunakan Algoritma CNN (Convolutional Neural Network),” Explore, vol. 14, no. 1, pp. 1–5, 2024.
M. R. D. Septian, A. A. A. Paliwang, M. Cahyanti, and E. R. Swedia, “Penyakit Tanaman Apel Dari Citra Daun Dengan Convolutional Neural Network,” Sebatik, vol. 24, no. 2, pp. 207–212, 2020.
A. Raup, W. Ridwan, Y. Khoeriyah, S. Supiana, and Q. Y. Zaqiah, “Deep learning dan penerapannya dalam pembelajaran,” JIIP-Jurnal Ilm. Ilmu Pendidik., vol. 5, no. 9, pp. 3258–3267, 2022.
W. S. E. Putra, “Klasifikasi citra menggunakan convolutional neural network (CNN) pada caltech 101,” J. Tek. ITS, vol. 5, no. 1, 2016.
A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi citra menggunakan convolutional neural network dan k fold cross validation,” J. Appl. Informatics Comput., vol. 4, no. 1, pp. 45–51, 2020.
M. Muslihati, S. Sahibu, and I. Taufik, “Implementasi Algoritma Convolutional Neural Network untuk Klasifikasi Jenis Sampah Organik dan Non Organik: Implementation of the Convolutional Neural Network Algorithm for Classifying Types of Organic and Non-Organic Waste,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 3, pp. 840–852, 2024.
O. D. S. Sunanto and P. H. Utomo, “Implementasi Deep Learning Dengan Convolutional Neural Network Untuk Klasifikasi Gambar Sampah Organik Dan Anorganik:(Implementation Of Deep Learning With Convolutional Neural Network To Classification Organic And Nonorganic Waste Picture),” UNEJ e-Proceeding, pp. 373–382, 2022.
R. Permana, H. Saldu, and D. I. Maulana, “Optimasi Image Classification Pada Jenis Sampah Dengan Data Augmentation Dan Convolutional Neural Network,” J. Sist. Inf. dan Inform., vol. 5, no. 2, pp. 111–120, 2022.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Farhan, Mhd Farhan Aditiya, Dafa Ikhwanu Shafa, Supiyandi, Aidil Halim Lubis (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









