Property Product Recommendation System as a Marketing Strategy at PT Java Abadi Sejahtera
DOI:
https://doi.org/10.69533/7scv6820Keywords:
Decision support System, Profile Matching, Property Product, Customer MemberAbstract
This study addresses the challenges faced by PT. Java Abadi Sejahtera in matching customer needs with available property products and the frequent data loss caused by manual recording processes. A web-based recommendation system was developed using the Profile Matching method, where criteria such as property type, location, size, price, payment method, and facilities are weighted according to their importance and processed using GAP calculations to determine the suitability between customer requirements and product data. Black box and white box testing results indicate that the system functions correctly and is able to process product data, customer member data, and follow-up data accurately. The system generates ranked product recommendations based on suitability calculations. The findings demonstrate that the recommendation system effectively supports marketing decision-making, improves the efficiency of the matching process, and enhances the overall quality of marketing strategies implemented by the company.
Downloads
References
Bahri, M., Muchlis, N. F., & Tajidun, L. M. (2016). Perbandingan metode profile matching dan PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) dalam menentukan siswa layak penerima beasiswa kurang mampu di SMK Kelautan dan Perikanan Kendari. Jurnal Ilmiah, 2(2), 1–10.
Bastiah. (2013). Sistem pendukung keputusan untuk menentukan pembelian rumah dengan menggunakan metode Fuzzy C-Means (FCM) clustering. Pelita Informatika Budi Darma, 5(1), 1–10.
David. (2003, June). Data flow diagram. Retrieved March 11, 2010, from http://www.scribd.com/doc/9758069/DATA-FLOW-DIAGRAM
Hasan, I. (2004). Pokok-pokok materi teori pengambil keputusan. Bogor Selatan: Ghalia Indonesia.
Lang, L., Sarker, B. K., Bhavsar, V. C., & Boley, H. (2005). A weighted-tree simplicity algorithm for similar matching of partial product description. In Proceedings of the 14th International Conference (pp. 55–60). Ottawa, Canada: National Research Council.
Makamu, V. H. (2011). Penduduk, perumahan, pemukiman, perkotaan dan pendekatan kebijakan.
Ong, J. O. (2013). Implementasi algoritma K-Means clustering untuk menentukan strategi marketing. Jurnal Teknik Informatika, 12(1), 1–10.
Munawaroh, S., Choiron, A., & Shanty, R. N. T. (n.d.). Sistem rekomendasi produk properti sebagai strategi marketing pada PT. Java Abadi Sejahtera. IJCCS, x(x), 1–5.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Siti Munawaroh, Achmad Choiron, Ratna Nur Tiara Shanty (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









