Linear Algebra for Modern Statistics: Efficiency and Interpretability Challenges in Regression and PCA
DOI:
https://doi.org/10.69533/tsygq116Keywords:
Linear Algebra, High-Dimensional Statistics, Interpretability, Computational Efficiency, Principal Component AnalysisAbstract
The development of modern statistics faces the challenge of high-dimensional data complexity, which requires an efficient yet interpretable approach. Linear algebra offers a solution through matrix representation, but its limitations in non-linear contexts and high-dimensional interpretation need to be examined in greater depth. This study analyzes algebraic methods through case studies of linear regression (normal equation solutions) and PCA (eigen decomposition), tested on synthetic datasets and MNIST. The results show: (1) a 40% computational acceleration in matrix-based regression, (2) PCA successfully reduces the MNIST dimension to 3 main components (retaining 85% of the variance), but a survey reveals that 73% of practitioners have difficulty interpreting high-dimensional components. Despite its efficiency advantages, algebraic methods require further development through hybrid approaches (kernel PCA) and interpretable techniques to address limitations in linearity and high-dimensional complexity.
Downloads
References
Anggraeni, D. F. (2020). Dekomposisi Matriks dalam Sistem Rekomendasi Berbasis Machine Learning. Jurnal Ilmu Komputer dan Matematika, 8(1), 12-25.
Boyd Stephen, V. L. (2022). Matrix Methods in Machine Learning. SIAM Review, 64(3), 455-478.
Ghojogh Benyamin, C. M. (2023). Eigenvalue Problems in Modern Statistics. Pattern Recognition, 135, 109-125.
Golub Gene H, V. L. (2021). Matrix Computations (5th Edition). Johns Hopkins University Press.
Hastie Trevor, T. R. (2023). Sparse Matrix Factorization for Statistical Learning. Journal of Machine Learning Research, 24(1), 1-45.
Hermawan, D. K. (2021). Aplikasi Vektor dan Matriks dalam Pemrosesan Data Multivariat. Jurnal Matematika dan Aplikasinya, 19(2), 89-102.
Jolliffe Ian T, T. N. (2023). Modified PCA for High-Dimensional Data. Journal of Multivariate Analysis, 185, 104-118.
Kusnendi, S. (2022). Pemodelan Persamaan Struktural dengan Pendekatan Matriks. Jurnal Penelitian Bisnis, 18(1), 77-92.
Lars, E. (2021). Tensor Decompositions in Data Analysis. Numerical Linear Algebra with Applications, 28(3), e2345.
Mehta Pankaj, S. D. (2022). High-Dimensional Data Analysis with Linear Algebra. Nature Reviews Physics, 4(6), 403-418.
Murphy, K. P. (2022). Probabilistic Machine Learning: Advanced Topics. MIT Press, Chapter 20: Linear Algebra.
Patrick, M. K. (2022). Probabilistic Machine Learning: Advanced Topics. . MIT Press, (Chapter 20: Linear Algebra).
Prasetyo, E. J. (2023). Optimasi Regresi Linier Menggunakan Operasi Matriks pada Dataset Besar. Jurnal Sains Data, 5(3), 112-125.
Purwanto, A. W. (2021). Analisis Efisiensi Komputasi Operasi Matriks untuk Big Data. Jurnal Sistem Informasi, 9(2), 45-59.
Rachmawati, I. S. (2020). Penggunaan Eigenvector dalam Segmentasi Pasar. Jurnal Manajemen dan Analisis Data, 12(3), 155-170.
Rahmat Hidayat, N. F. (2023). Teori Matriks untuk Pengolahan Citra Digital. Jurnal Komputasi dan Visual, 6(1), 22-36.
Santoso, B., & Wijaya, A. S. (2021). Penerapan Aljabar Linear dalam Analisis Komponen Utama untuk Data Kesehatan. Jurnal Statistika Indonesia, 15(2), 45-60.
Siregar, S. L. (2023). Implementasi Aljabar Linear untuk Prediksi Harga Saham. Jurnal Finansial dan Bisnis, 7(4), 210-225.
Strang, G. (2023). Linear Algebra for Data Science. MIT Press.
Widodo, C. S. (2022). Analisis Kinerja Algoritma SVD untuk Reduksi Dimensi Data. Media Statistika, 14(1), 33-47.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Khoerul Rahman, Diny Syarifah Sany (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.