a

Using Backpropagation Neural Network for Polyvinylchloride Ceiling Price Modeling

Authors

  • Hendra Purnawan Jakarta Global University Author
  • Ryan A. P. Putra Jakarta Global University Author
  • Rifqi Fauzi Universitas Gadjah Mada Author
  • Antonius D. Setiawan Jakarta Global University Author
  • Ariep Jaenul Jakarta Global University Author
  • Rosyid Al-Hakim Universitas Harapan Bangsa Author
  • Habibie S. Nugroho Indonesia Defense University (UNHAN) Author
  • Yanif Dwi Kuntjoro Indonesia Defense University (UNHAN) Author

DOI:

https://doi.org/10.69533/caz0ac86

Keywords:

artificial intelligence, forecasting, R algorithm, time series forecasting

Abstract

Sales predictions on building material products today have applied an artificial neural network approach. One of the products of building material that need to be predicted for sales is polyvinylchloride (PVC) ceilings. Most companies haven’t implementing prediction technique for the sale of PVC ceilings, so this study aims to predict PVC ceiling sales with the backpropagation neural network (BPNN) method using the R algorithm. Unit gradients are calculated using the average absolute per cent error value (MAPE) to minimize the total square errors of network output. The results showed that the network architecture used was 4 to 6-1 and obtained an accuracy of 88% based on the lowest MAPE value.

Downloads

Download data is not yet available.

References

H. Geman, Commodities and commodity derivatives: modeling and pricing for agriculturals, metals and energy, vol. 302. New York (US): John Wiley & Sons, 2005.

M. A. Musarat, W. S. Alaloul, M. S. Liew, A. Maqsoom, and A. H. Qureshi, “Investigating the impact of inflation on building materials prices in construction industry,” Journal of Building Engineering, vol. 32, p. 101485, 2020.

K. Figueiredo, R. Pierott, A. W. A. Hammad, and A. Haddad, “Sustainable material choice for construction projects: A Life Cycle Sustainability Assessment framework based on BIM and Fuzzy-AHP,” Build Environ, vol. 196, p. 107805, Jun. 2021, doi: 10.1016/J.BUILDENV.2021.107805.

P. M. Visakh and R. N. Darie-Nita, “Polyvinylchloride (PVC)-Based Blends: State of Art, New Challenges and Opportunities,” in Polyvinylchloride-based Blends, Cham (CH): Springer, 2022, pp. 1–17. doi: 10.1007/978-3-030-78455-3_1.

P. Davis, S. Burn, M. Moglia, and S. Gould, “A physical probabilistic model to predict failure rates in buried PVC pipelines,” Reliab Eng Syst Saf, vol. 92, no. 9, pp. 1258–1266, Sep. 2007, doi: 10.1016/J.RESS.2006.08.001.

P. M. Visakh and R. N. Darie-Nita, “Polyvinylchloride (PVC)-Based Blends: State of Art, New Challenges and Opportunities,” in Polyvinylchloride-based Blends, Cham (CH): Springer, 2022, pp. 1–17. doi: 10.1007/978-3-030-78455-3_1.

A. Nowneow and V. Rungreunganun, “Poly Vinyl Chloride Pellet Price Forecasting Using Arima Model,” International Journal of Mechanical Engineering and Technology (IJMET, vol. 9, no. 13, pp. 224–232, 2018.

M. F. Maulana, S. Saadah, and P. E. Yunanto, “Crude Oil Price Forecasting Using Long Short-Term Memory,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 7, no. 2, pp. 286–295, Sep. 2021, doi: 10.26555/JITEKI.V7I2.21086.

M. Astiningrum, V. N. Wijayaningrum, and I. K. Putri, “Forecasting Model of Staple Food Prices Using Support Vector Regression with Optimized Parameters,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 7, no. 3, pp. 441–452, Dec. 2021, doi: 10.26555/JITEKI.V7I3.22010.

I. N. Y. M. Y. Saputra, S. Saadah, and P. E. Yunanto, “Analysis of Random Forest, Multiple Regression, and Backpropagation Methods in Predicting Apartment Price Index in Indonesia,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 7, no. 2, pp. 238–248, Jul. 2021, doi: 10.26555/JITEKI.V7I2.20997.

B. J. Wythoff, “Backpropagation neural networks: A tutorial,” Chemometrics and Intelligent Laboratory Systems, vol. 18, no. 2, pp. 115–155, Feb. 1993, doi: 10.1016/0169-7439(93)80052-J.

R. Hecht-Nielsen, “Theory of the Backpropagation Neural Network,” Neural Networks for Perception, pp. 65–93, Jan. 1992, doi: 10.1016/B978-0-12-741252-8.50010-8.

A. Herdiansah, R. I. Borman, D. Nurnaningsih, A. A. J. Sinlae, and R. R. Al Hakim, “Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 2, pp. 388–395, 2022, doi: 10.30865/jurikom.v9i1.3846.

J. S. Widjaya, D. R. Agushinta, and S. R. P. Sari, “Sistem Prediksi Jumlah Pasien Covid-19 Menggunakan Metode Trend Least Square Berbasis Web,” SISTEMASI, vol. 10, no. 1, pp. 39–51, Jan. 2021, doi: 10.32520/STMSI.V10I1.1036.

M. A. Wijarnoko, M. K. Sophan, and K. E. Permana, “Best Alpha for Forecasting Stock using Brown’s Weighted Exponential Moving Average,” SISTEMASI, vol. 11, no. 3, pp. 548–559, Sep. 2022, doi: 10.32520/STMSI.V11I3.1588.

A. W. Sugiyarto, D. U. Wutsqa, N. Hendiyani, and A. R. Il Rasjava, “Optimization of genetic algorithms on backpropagation neural network to predict national rice production levels,” in 2019 International Conference on Applied Information Technology and Innovation (ICAITI), Denpasar (ID): IEEE, 2019, pp. 77–81. doi: 10.1109/ICAITI48442.2019.8982118.

Downloads

Published

2024-05-08

Issue

Section

Articles

How to Cite

Using Backpropagation Neural Network for Polyvinylchloride Ceiling Price Modeling. (2024). Jurnal Ilmiah Informatika Dan Komputer, 1(1), 18-22. https://doi.org/10.69533/caz0ac86