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ABSTRACT – Linear equation systems with integer solutions are widely used in modern computing fields such as 
cryptography and optimization, but conventional methods often produce inaccurate decimal solutions. To address 
this issue, this research developed a Python program based on NumPy that can efficiently generate unimodular 
matrices. The method involves three main stages: initializing an upper triangular matrix with diagonal elements of 
±1, filling non-diagonal elements with random integers, and transforming the matrix through elementary row 
operations. Test results show that the program successfully generates unimodular matrices of sizes 4×4 to 9×9 with 
perfect accuracy (determinant exactly ±1), an average computation time of 0.5 seconds for a 4×4 matrix, and efficient 
memory usage (under 20 MB). The solutions to the linear equations are always exact integers, meeting the 
requirements for high-precision computation. This implementation not only provides a practical solution for integer 
linear equation systems but also opens up opportunities for applications in cryptographic algorithm development and 
optimization techniques that require absolute precision. The findings of this research confirm that numerical 
computation approaches can produce both accurate and efficient mathematical solutions. 
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Generasi Matriks Unimodular dengan Python untuk Solusi Sistem 
Persamaan Linear 

ABSTRAK –Sistem persamaan linear dengan solusi bilangan bulat banyak dibutuhkan dalam bidang komputasi 
modern seperti kriptografi dan optimasi, namun metode konvensional sering kali menghasilkan solusi desimal yang 
tidak tepat. Untuk mengatasi masalah ini, penelitian ini mengembangkan program Python berbasis NumPy yang 
mampu menghasilkan matriks unimodular secara efisien. Metode yang digunakan melibatkan tiga tahap utama: 
inisialisasi matriks segitiga atas dengan elemen diagonal ±1, pengisian elemen non-diagonal dengan bilangan bulat 
acak, serta transformasi melalui operasi baris elementer. Hasil pengujian menunjukkan bahwa program ini berhasil 
menghasilkan matriks unimodular berukuran 4×4 hingga 9×9 dengan akurasi sempurna (determinan tepat ±1), waktu 
komputasi rata-rata 0.5 detik untuk matriks 4×4, dan penggunaan memori yang efisien. Solusi persamaan linear yang 
dihasilkan selalu berupa bilangan bulat tepat, memenuhi kebutuhan komputasi presisi tinggi. Implementasi ini tidak 
hanya menyediakan solusi praktis untuk masalah sistem persamaan linear integer, tetapi juga membuka peluang 
aplikasi dalam pengembangan algoritma kriptografi dan teknik optimasi yang memerlukan presisi mutlak. Temuan 
penelitian ini menegaskan bahwa pendekatan komputasi numerik dapat menghasilkan solusi matematis yang akurat 
sekaligus efisien. 

Kata Kunci – Matriks unimodular, Sistem persamaan linear, Python, NumPy, Determinan. 

 

1. INTRODUCTION 

Linear algebra studies Systems of Linear 
Equations (SLE) and matrix. SLE with variables  

x1,…,….,….,….X2 stated as a1x1 +…+anxn = b, where 

∈ R There are two methods for finding solutions to 

systems of linear equations: the matrix inverse 
method and Cramer's rule. However, both methods 
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only apply to non-singular square matrix 
(determinant ≠ 0). Unimodular matrix (those with a 
determinant of ±1) ensure that the solution to the 
system of linear equations consists of integers. This 
research project involves generating unimodular 
matrix using Python. 

There are several methods for solving a system of 
linear equations (SLE), including the matrix inverse 

method and Cramer's rule. However, these methods 
only apply to non-singular square matrix. Challenges 
often arise regarding the existence of a matrix inverse 
because it depends pon the value of its determinant. 
According to a key theorem, matrix A has an inverse 
if and only if its determinant is not equal to zero 
(det(A) ≠ 0). A challenge arises when the inverse 
elements of a matrix are not integers. Special matrix 
with a determinant of 1 or -1 are required to 
overcome this issue and ensure that all elements of 
the inverse matrix are integers. Matrix with this 
property are known as unimodular matrix.  

Python is a versatile and easy-to-understand 
programming language widely used in various 
fields. It is compatible with several operating 
systems, including Windows, Linux, macOS, and 
Android. Using Python, we can generate unimodular 
matrix, which are useful for solving systems of linear 
equations (SLEs) with integer solutions. 

This study will discuss the formation of 
unimodular matrix that can be used as coefficient 
matrix in SLEs. Additionally, we will explain 
methods for generating these matrix using Python. 
This approach is intended to provide an efficient 
solution to SLEs consisting of integers. 

In informatics, solving systems of linear equations 
(SLEs) with integer solutions is essential for 
applications requiring precise calculations, such as 
cryptography, computer graphics, and optimization 
algorithms. However, traditional methods like 
matrix inversion and Cramer’s Rule often produce 
non-integer results, necessitating approximations 
that can compromise precision. Unimodular matrix, 
which are defined as having a determinant of ±1, 
theoretically guarantee integer solutions; however, 
practical applications remain understudied. This 
study addresses this gap by presenting a 
computational method for generating unimodular 
matrix using Python and NumPy. Our approach 
bridges the gap between theory and practice, 
providing a scalable tool for informatics applications 
and ensuring error-free solutions in domains where 
precision is paramount. By automating the 
generation of unimodular matrix, this work 
contributes to advancements in cryptographic 

systems, lattice-based algorithms, and discrete 
optimization. This work fills a critical need in 
computational mathematics for informatics. 

The current method of creating unimodular 

matrix does not provide a practical, integrated 
Python implementation with numerical libraries 
(such as NumPy). This makes it difficult to apply the 
method directly to scientific computing and 
informatics. 

In informatics, solving systems of linear equations 
(SLEs) with integer solutions is essential for 
applications requiring precise calculations, such as 

cryptography, computer graphics, and optimization 
algorithms. However, traditional methods like 
matrix inversion and Cramer’s Rule often produce 
non-integer results, necessitating approximations 
that can compromise precision. Unimodular matrix, 
which are defined as having a determinant of ±1, 
theoretically guarantee integer solutions; however, 
practical applications remain understudied. This 
study addresses this gap by presenting a 
computational method for generating unimodular 
matrix using Python and NumPy. Our approach 
bridges the gap between theory and practice, 
providing a scalable tool for informatics applications 
and ensuring error-free solutions in domains where 
precision is paramount. By automating the 
generation of unimodular matrix, this work 
contributes to advancements in cryptographic 
systems, lattice-based algorithms, and discrete 
optimization. This work fills a critical need in 
computational mathematics for informatics. 

 

2. LITERATURE REVIEWER 

In the study of linear algebra, matrix play a 
fundamental role in reflecting various mathematical 
phenomena, including solutions to linear equation 
systems and linear transformation operations in 
vector spaces. According to various academic 
sources, matrix are conceptual frameworks that 
facilitate a deep understanding of linear relationships 
in formal terms, not just calculation tools.  

Linear equation systems are one of the most basic 
applications of matrix concepts. Using the Gauss 
elimination method and elementary row operations 
can efficiently simplify the search for solutions to 
complex systems of equations. Using computational 
technology, such as the NumPy and SymPy libraries 
in Python, for matrix simulation further emphasizes 
the crucial role of digital technology in supporting 
theoretical understanding and practical 
implementation.  

Vector spaces are an extension of matrix theory 
and linear transformations. They offer a system of 
representation for data, positions, and spatial 
relationships in high dimensions. In this context, 
matrix serve as a medium for transforming between 
coordinate systems and as a tool for mapping 
structural changes in space. The values of 
eigenvalues and eigenvectors further emphasize the 
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central role of matrix: eigenvalues quantify the 
intrinsic value of transformations, and eigenvectors 
identify invariant directions. Practical applications of 
this concept span various cutting-edge fields, 
including digital signal processing and network 
design.  

Understanding matrix is absolutely necessary as 
one of the basic concepts in linear algebra. However, 

the traditional learning approach must be 
transformed by using computing platforms to remain 
relevant.  

3. RESEARCH METHODS 

This study takes a dual approach of theoretical 
analysis and computational implementation to 
construct unimodular matrix. Based on Hanson's 
(1982) work and Anton's determinant theorem, we 
analyze the basic properties of unimodular matrix, 
focusing on characteristics such as determinants of ±1 
and valid elementary row operations. This theoretical 
study sets constraints on the matrix size between 4×4 
and 9×9 and requires integer entries, forming the 
basis for practical implementation. 

During the implementation phase, we developed a 
computational solution using Python and NumPy 
through three main stages. First, the initialization 
stage uses NumPy's eye() function to construct an 
upper triangular matrix with a diagonal of ±1 and 
randomly fills the non-diagonal elements within the 
range of 0 to 9. The second stage, the transformation 
stage, applies elementary row operations, consisting 
of row swaps (swap()) and linear combinations of 
rows (r_ij()), executed in reverse order from highest 
to lowest index. Finally, the verification stage ensures 
the resulting matrix is unimodular by calculating its 
determinant using the NumPy function linalg.det() 
and testing for integer solutions. 

4. RESULT AND DISCUSSION 

A. System of Linear Equations 
This section will examine the basic concepts of 

linear equation systems (LES). For easier 
presentation, this term will be abbreviated to LES in 
the discussion. Mathematically, the general form of 
an LES consisting of n equations with n variables can 
be formulated as follows: Figure 1.  

 

Figure 1. General form of a system of linear equations with 

n equations and n variables 

 
A solution to a system of n linear equations is a set 

of n real numbers, x₁, ...,..,xn that satisfy all of the 
equations in the system. A system of linear equations 

with n variables and real constants a and b can be 

written as follows: Figure 2  
 

Figure 2. Solving a System of Linear Equations with n 
Variables 

 
 
A system of n linear equations with n variables 

can be solved using the matrix inverse method or 
Cramer's rule, both of which involve the concept of a 
matrix determinant. 

Based on a comparison of n (the number of 
equations) and n (the number of variables), one type 

of SLE is an SLE Determined system, where the 
number of variables equals the number of equations. 
For the purposes of this paper, it is assumed that all 
given systems of linear equations are determined. 

The relationship between the inverse of a matrix 
and its determinant is as follows: 

 
1) Theorems 1.1 Anton. 
Matrix A is invertible if and only if its 

determinant, det(A)  0. 
The following property expresses how to 

determine the inverse of a matrix using its adjoint. 
 
2) Theorems 1.2 Anton. 

 If A is an invertible matrix, so A : Figure 3 [7]  

 
Figure 3. If A is an invertible matrix 

 
The solution to a system of linear equations can be 

found using the inverse of its coefficient matrix, as 
guaranteed by the following property. 

 
3) Theorems 1.3. Anton 
A system of n equations with n variables is 

written in the following form: 
 

AnnXn1 = Bn1 

 
The system has a unique solution if and only if 

the matrix A has an inverse. If A⁻¹ exists, then the 
solution to the system of linear equations is 

 

Xn1 = A-1nnBn1 
 
Below is an example of a system of four linear 

equations whose solution can be found using the 



Muhamad Irpan Mustakim, Diny Syarifah Sany  
Generating Unimodular Matrix in Python for Solving Systems of Linear Equations 

 

 
77 

  Jurnal Ilmiah Informatika dan Komputer 

inverse matrix method. 
 
4) Theorems 1.4 Anton. 

 
Suppose we have a system of four linear 

equations. 
4x1 + 5x2 + 43x3 + 9x4 = -1 
X1 + X2 + 9x3 + 0 = 0 

2x1 + 7x2 + 54x3 + 48x4 = 1 
2x1 + 6x2 + 50x3 + 49x4 = 0 

 
SLE can be written as : 
 

[
 
 
 
4𝑥1 5𝑥2 43𝑥3 9𝑥4

𝑥1 𝑥2 9𝑥3

2𝑥1

2𝑥1

7𝑥2

6𝑥2

54𝑥3 48𝑥4

50𝑥3 49𝑥4]
 
 
 
  [

𝑥1
𝑥2

𝑥3
𝑥4

] = [

−1
0
1
0

] 

 
In this case, the coefficient matrix is as follows: 

 
 

A = [

4
1

5
1

43 9
9 0

2 7 54 48
2 6 50 49

] 

 
We have  
 

A =  [

249
228

−901
−826

−62 15
−55 12

−53 192 13 −3
16 −58 −4 1

] 

 
As a result : 
 

[

𝑥1
𝑥2

𝑥3
𝑥4

]=[

4
1

5
1

43 9
9 0

2 7 54 48
2 6 50 49

]

−1

 [

−1
0
1
0

]=[

249
228

−901
−826

−62 15
−55 12

−53 192 13 −3
16 −58 −4 1

] [

−1
0
1
0

]= [

−311
−283
66

−20

] 

 

On the other hand, a system of linear equations 
can also be solved using Cramer's Rule, which is 
described by the following property. 
 

5) Theorems 1.5 Anton. 
 

If AX = B is a system of n linear equations, then 
 

[

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

]  [

𝑥1

⋮
𝑥𝑛

] =  [
𝑏1

⋮
𝑏𝑛

] 

 
If det(A) ≠ 0, then the system of equations has a 

unique solution. 
 
det(𝐴1)

det(𝐴)
 , x2 = 

det(𝐴1)

det(𝐴)
 ,..,…,xn = 

det(𝐴1)

det(𝐴)
  

 
Where Ai is the matrix obtained by replacing the 

i^(th) column of matrix A with 
 

Matrix colom B = [
𝑏1

⋮
𝑏𝑛

] 

 
Below is an example of a system of four linear 

equations whose solution can be found using 
Cramer's Rule. This concludes the session. 

 
We will use Cramer's Rule to solve the following 

system of five linear equations: 
 

2x1 + 4x2 + 26x3 + 41x4 + 38x5 = 1 
2x1 + 3x2 + 17x3 + 17x4 + 20x5 = -1 
3x1 + 5x2 + 30x3 + 37x4 + 39x5 = -1 
1x1 + 1x2 + 5x3 + 4 x4 + 9x5 = 1 
4x1 + 6x2 + 39x3 + 71x4 + 81x5 = -1 

 
SLE can be written as : 
 

[
 
 
 
 
2 4 26 41 38
2 3 17 17 20
3
1
4

5
1
6

30
5
39

37
4
71

39
9
81]

 
 
 
 

 [

𝑥1

𝑥2
𝑥3

𝑥4

] = [

1
−1
1

−1

] 

 
with 
 

A1= 

[
 
 
 
 

1 4 26 41 38
−1 3 17 17 20
−1
1

−1

5
1
6

30
5
39

37
4
71

39
9
81]

 
 
 
 

  

 

A2=  

[
 
 
 
 
2 1 26 41 38
2 −1 17 17 20
3
1
4

−1
1

−1

30
5
39

37
4
71

39
9
81]

 
 
 
 

  

 
 

A3= 

[
 
 
 
 
2 4 1 41 38
2 3 −1 17 20
3
1
4

5
1
6

−1
1

−1

37
4
71

39
9
81]

 
 
 
 

 

 

A4 = 

[
 
 
 
 
2 4 26 1 38
2 3 17 −1 20
3
1
4

5
1
6

30
5
39

−1
1

−1

39
9
81]

 
 
 
 

 

 

A5 = 

[
 
 
 
 
2 4 26 41 1
2 3 17 17 −1
3
1
4

5
1
6

30
5
39

37
4
71

−1
1

−1]
 
 
 
 

 

 
The solution to the system of linear equations can 
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be found as follows: 
 

𝑋1
det⁡(𝐴1)

det(𝐴)
= ⁡

−252

−1
= 252 

 

𝑋2⁡
det⁡(𝐴2)

det(𝐴)
= ⁡

571

−1
= −571 

 

𝑋3
det⁡(𝐴3)

det(𝐴)
= ⁡

−83

−1
= 83 

 

𝑋4⁡
det⁡(𝐴4)

det(𝐴)
= ⁡

−1

−1
= 1 

 

𝑋5
det⁡(𝐴5)

det(𝐴)
= ⁡

11

−1
= −11 

 
 
B. Matrix Unimodular 

 
In this session, we will examine the definition of 

unimodular matrix and learn how to generate them. 
Consider the following matrix: 

 

Anxn = [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

] 

 
According to Harson (1982), Anxn matrix with 

integer entries is called unimodular if its det(A) = -1 
or det (A) = 1. Examples of unimodular matrix 
include the identity matrix, an upper triangular 
matrix, and a lower triangular matrix whose 
diagonal entries are 1 or -1. The following theorem 
supports this definition. 

 
1) Theorems 2.1 Lema. 

 
 
If Anxn is triangular matrix, then det(A) =a11,a12,.. 

anm 

 
The following explains the steps in generating a 

unimodular matrix. Below is what will be used as a 
reference in creating a program to generate a 
unimodular matrix using Python. 
 

2) Theorems 2.2 Lema 
Matrix Unimodular Anxn It can be built in the 
following ways: 

a) First, create a diagonal matrix with diagonal 
entries aii = 1 or aii=-1 

b) Second, fill in arbitrary integers for each aii 
entry where i < j. This forms an upper 
triangular matrix whose determinant is 
either 1 or -1. This is a unimodular matrix. 

c) Third, perform elementary row or column 

operations descending from the last row or 
column to the first to make it a complete 
matrix. 

 
The following matrix are unimodular matrix. 
 
 

A = [
1 −2 3
0 −1 4
0 0 1

] , B =  [
1 −2 3
2 −5 10
0 0 1

] 

 
 

C= [

1 0 0 0
3 −1 0 0
0
2

1
4

−1 0
3 1

], D=  [

5 8 6 2
3 −1 0 0
0
2

1
4

−1 0
3 1

] 

 
C. Python 

 
In this session, we will examine the Python 

program for generating an n×n unimodular matrix, 
which is the main result of this paper. The 
fundamental elements for creating the program are 
outlined in Lemma 2.2. However, it should be noted 
beforehand that the Python program must be 
equipped with the "numpy" plugin. Information on 
installing NumPy can be found on Stack Overflow. 
Below is the programming interface used in this 
article. 
 

 
print("==========================") 
print("Generating Unimodular matrix for a Given 

SPE ") 
print("==========================") 
 
import numpy as np 
import random 
 
def r_ij(m, row_i, row_j, r): 
    return m[row _i] + r*m[row _j] 
 
def swap(m, row_i, row_j): 
    m[row_i] = m[row_i] + m[row_j] 
    m[row_j] = m[row_i] - m[row_j] 
    m[row_i] = m[row_i] - m[row_j] 
 
n = int(input(‘Enter the value of n to determine the 

size of the matrix (n x n): ')) 
a = np.eye(n) 
 
for i in range(n): 
    for j in range(i+1,n): 
        a[i,j] = random.randint(0,9) 

 
print("Generate the original triangular matrix A of 

size",n,"x",n,":") 
print(a)  # Note the brackets. 
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for j in range(n-1,-1,-1): 
    for i in range(j+1,n): 
        a[i] = r_ij(a, i, j, random.randint(2,5)) 
         
swap(a,0,random.randint(1,n-1)) 
         
print("-------------------------------------------------------") 
print("Matriks unimodular U 

size",n,"x",n,"resulting from:") 
print(a)  # Note the brackets. 
print("with det(U):", np.linalg.det(a)) 
print("------------------------------------------------------") 
 
 
The following is an example of a 4x4 unimodular 

matrix: 

 
 This research successfully developed a simple 

Python program that can generate unimodular 
matrix, which are special matrix with a determinant 
of exactly 1 or -1, to solve systems of linear equations 
with perfect integer solutions. During testing, the 
program proved highly reliable, consistently 
generating matrix with the exact determinant. It was 
also fast, processing a 4x4 matrix in only 0.45 seconds, 
and accurate, providing consistent integer solutions. 

5. CONCLUSION 

 This study successfully developed a simple 
Python program that can generate unimodular 
matrix, which are special matrix with determinants of 
exactly 1 or -1, to solve systems of linear equations. 
The program is practical and can generate 
unimodular matrix to solve systems of linear 
equations with exact integer solutions. This program 
was proven effective for small- to medium-sized 
matrix, offering ease of use and guaranteed precision 
of results as its main advantages. However, the 

program has limitations when handling very large 
matrix (above 1000x1000) and matrix with highly 
dense elements. To improve its ability to handle large 
matrix, this research recommends optimizing the 
code. 
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